

COLLEGE OF DENTAL MEDICINE

Heparin-conjugated Bio-glue to Promote Healing of Lubricin-Coated Fibrocartilage Injuries

Rachel Brooke, David Xiang, Solaiman Tarafder, Chang Lee* *Faculty mentor

Center for Dental and Craniofacial Research, College of Dental Medicine, Columbia University, New York, NY

INTRODUCTION

- Functional regeneration of fibrocartilaginous tissues, including knee meniscus and TMJ disc, is an acute clinical burden.
- Tears in avascular region of meniscus and perforation in TMJ discs have poor healing capabilities, frequently leading to detrimental joint damages.
 We have recently developed a regenerative strategy for meniscus and TMJ disc by recruitment of endogenous stem/progenitor cells via a connective

RESULTS

Lap shear properties significantly increased with Conjugated Hep-Fib-Gen even with lubricin coating

tissue growth factor (CTGF)-loaded bio-glue mixed with PLGA microspheres (μ S)-encapsulating transforming growth factor beta 3 (TGF β 3) (**Fig. 1**).

TGFβ3 in PLGA μS

Fibrocartilaginous tissue integration

Mesenchymal Stem/Progenitor Cells

Figure 1. *In situ* regeneration of fibrocartilaginous tissues such as knee meniscus and TMJ disc by stem cell recruitment.

- Clinically, however, exposure to lubricin in synovial fluids has harmful effects on the healing of fibrocartilaginous tissues, supported by our previous works.
- This study is designed to advance our approach to fibrocartilage regeneration by tethering lubricin on torn tissue surfaces.
- Given that the heparin binding domain at N terminal of lubricin, we applied a heparin-conjugated fibrin gel cross-linked with genipin to our established explant model of avascular meniscus tear healing

Figure 3. Lap Shear Tests of different bio-glues with lubricin-coated meniscus strips (**A**). Lap shear modulus (**B**) (n=8-15 per group: p<0.0001 compared to all groups). %Change in shear strength by lubricin coating compared to (PBS control) no coating samples (**C**) (n=8-15 per group; p<0.001 compared to no-coating control.

Conjugated Hep-Fib-Gen improves healing of meniscus pre-coated with lubricin

METHODS

Strategies to enable healing of lubricin-infiltrated meniscus

Figure 4. Healing of avascular meniscus tears by MSC recruitment with CTGF and TGF β 3 (μ S) administered in various bio-glues for 4 wks: Histology with Picrosirius Red (PR) (**A**), and tensile modulus (**B**) (n=5 per group: *:p<0.01 compared to all groups), % changes in tensile modulus (**C**) and strength (**D**) by lubricin pre-coating (n=5 per group; *:p<0.01 compared to no-coating (PBS control).

DISCUSSION AND CONCLUSIONS

Figure 2. Strategy to improve healing of lubricin infiltrated meniscus by heparin conjugated fibrin cross-linked with genipin.

- Our findings suggest that heparin conjugation further increased the mechanical properties of fibrin cross-linked with genipin when applied to lubricin infiltrated fibrocartilage.
- One of the limitations of this study was that there was a relatively large variance in the initial mechanical properties of conjugated Hep-Fib-Gen as compared to the other bio-glues, which may require further refinement of purity in the carbodiimide synthesis process.
 In conclusion, Conjugated Fib-Gen may serve as an efficient bio-glue to promote MSC healing of clinically relevant injuries on fibrocartilaginous tissues including TMJ disc and knee meniscus.

ACKNOWLEDEGMENTS

This research was funded by NIAMS 5R01AR071316 (C.H.L.) and Columbia University College of Dental Medicine's summer fellowship program.